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Abstract. We study the surface and guided wave polaritons for a magnetic layered structure
on a substrate. Using the effective-medium approximation we obtain analytic equations for
implicit dispersion relations. These dispersion relations are solved numerically for a variety of
layering patterns, and profiles showing the localization of both guided waves and surface waves
are obtained. Explicit results are presented for an FeF2–ZnF2 superlattice on a ZnF2 substrate.

1. Introduction

Polaritons, electromagnetic waves coupled to the elementary excitations of a crystal such
as phonons, plasmons and magnons, are a topic of continuing interest [1, 2]. In thin films
one finds both surface polaritons, in which the excitation is localized near the surface,
and guided modes, where the excitation has a standing-wave-like character within the film.
Polaritons in semiconducting media have been extensively examined. For example, Ushioda
and Loudon treated the surface and guided modes for electromagnetic waves coupled to
the optical phonon in semiconductor films [3]. Surface polariton and related modes that
propagate in thin-film magnetoplasmas have been studied extensively by Kushwaha and
Halevi [4–7]. Recently, a full discussion of surface and guided waves in the retarded limit
for magnetoplasma films was given by Elmzughi and Tilley [8]. A substantial account of
an effective-medium treatment of layered magnetoplasma films has recently been given by
Elmzughi [9].

Excitations in magnetic films have been investigated by a number of authors,
e.g. for the case of a ferromagnetic slab by Damon and Eshbach [10], Karsono and
Tilley [11] and Marchand and Caille [12]. Early theoretical work on surface polaritons
on antiferromagnetics [13–15] has now been verified experimentally for FeF2 both through
infra-red reflectivity [16–18] and through infra-red attenuated total reflection (ATR)
measurements [19]. This experimental work gives a renewed impetus to extend theoretical
calculations to more complex and realistic structures.

In recent years, there has been a surge of interest in multilayer structures. Multilayers
composed of two antiferromagnets such as FeF2–CoF2 [20] and NiO–CoO [21] have been
constructed and studied by neutron scattering and by thermal measurements. In addition,
individual ultra-thin antiferromagnetic films can be studied by producing many of them in
an antiferromagnetic–nonmagnet structure such as CoO–MgO [22]. It is likely that these
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structures will eventually be characterized by infra-red measurements and therefore it is
necessary to have a theoretical understanding of the polariton modes in these structures.

The magnetostatic spin wave modes in superlattices were originally obtained [23] by
using Bloch’s theorem, but later it was shown that a much simpler effective-medium [24, 25]
description was often useful. Such a description is valid when the characteristic wavelengths
of the excitation are much longer than the superlattice period. It is then possible to derive
the effective-medium permeability tensor [24, 25] and dielectric tensor [26, 27]. A feature
of both tensors is that they are now characteristic of anisotropic media because of the
anisotropy introduced by the layered structure itself.

There have been a number of studies of magnetic polaritons in semi-infinite
antiferromagnetic superlattices using effective-medium theory [28]. Some finite structures
have also been examined [29]. In this paper we study the surface and guided modes
that propagate in an effective-medium film on a nonmagnetic substrate. We use the Voigt
configuration where the direction of propagation is perpendicular to the magnetic moments
and to the applied field. We obtain analytical forms for implicit dispersion relations and
show that these results reduce to previously known expressions for simpler cases. These
expressions apply for both ferromagnetic and antiferromagnetic effective-medium films.
A key feature of our results deals with the localization of the spin wave modes. In
particular we show that guided wave modes lying within the bulk continuum of modes
can still be strongly localized to one surface or another of the film. In addition we see
that introducing a nonmagnetic substrate introduces a substantial nonreciprocity [30] into
the dispersion relation for surface and guided wave modes, i.e.ω(+k) 6= ω(−k) where
k is the propagation wavevector. Such a nonreciprocity does not occur for an isolated
antiferromagnetic film.

The remainder of the paper is organized as follows. In section 2 we present the
derivation of the general dispersion relations. In section 3 we study these relations in the
nonretarded (static) limit. In section 4 we use the general dispersion relations to investigate
the polaritons for effective-medium films bounded both symmetrical and asymmetrically.
We give numerical examples in this section for an FeF2–ZnF2 superlattice on a ZnF2
substrate. In addition to the dispersion relations, we present profiles illustrating the character
and localization of the surface and guided waves.

2. Derivation of general dispersion relations

We consider the geometry shown in figure 1. An effective-medium magnetic film is
sandwiched between two dielectric media, a capping layer characterized by dielectric
constantεm and substrate having dielectric constantεs . We restrict our attention to the
Voigt geometry, with an external static magnetic fieldH0 along thez axis. When the static
magnetization lies in thexz plane, the effective-medium permeability tensor is often given
by [24, 25]

µ(ω) =
( µ1 −iµT 0

+iµT µ2 0
0 0 µ3

)
(1)

where

µ1 = faµ
a
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µT = (faµ
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1 + fbµ
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b
2)/(fbµ
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1 + faµ

b
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wherefa (fb) is the ratio of volume occupied by the layer a (b) to the total volume of the unit
cell of the specimen. Each layerα(= a or b) in the magnetic superlattice is characterized
by a dielectric constantεα and a permeability tensorµα(ω), which is given by [31, 32]

µα(ω) =
( µα

1 −iµα
2 0

+iµα
2 µα

1 0
0 0 µα

3

)
. (3)

Hereµα
1 andµα

2 have resonances at the corresponding ferromagnetic or antiferromagnetic
resonance frequencies. Generallyµα

3 does not have a strong resonance frequency, but in
canted structures such as an antiferromagnetic in a spin flop state this is not true. In the
absence of dampingµα

1 is real and iµα
2 is pure imaginary. The effective dielectric tensorε

has the properties of a conventional uniaxial medium [27] with principal valuesε‖ for εxx

andεzz andε⊥ = εyy , where

ε⊥ = faεa + fbεb (4a)

ε‖ = εaεb/(fbεa + faεb). (4b)

Figure 1. The geometry considered in this paper.

To find the dispersion relation, we start with Maxwell’s curl equations. After eliminating
the electric field variableE, we obtain the following wave equation:

k × ε−1 · (k × H) + q2
0µ(ω) · H = 0 (5)

where q0 = ω/c is the vacuum wavevector. In (5) we assumed a spatial and temporal
dependence of the form exp i(k · r − ωt). Consequently (5) is a set of three linear
homogeneous equations satisfied by the magnetic field in the effective-medium film. The
same set of three equations also gives valid solutions in the isotropic medium cap and the
substrate, if we just takeµ(ω) → 1 andε goes toεm or εs . As is to be expected from
the form of (1), the magnetic polaritons of interest are TE modes with the electric fieldE
along thez axis and the magnetic fieldH in the xy plane. The nontrivial solution of such
a set of three linear equations leads to

−k2
y = β2 = (µ1/µ2)k

2
x − q2

0ε⊥µV (6)
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in the effective medium, and

−k2
y = β2

i = k2
x − q2

0εi i = m or s (7)

whereµV = (µ1µ2 − µ2
T )/µ2 is the Voigt permeability.

To derive the dispersion relation for the TE magnetic wave in the Voigt configuration,
we seek a solution of Maxwell’s equation in the three media in the form

E = (0, 0, Emz) exp(−βmy) y > +d (8)

E = (0, 0, Eaz) exp(βy) + (0, 0, Ebz) exp(−βy) d > y > 0 (9)

E = (0, 0, Esz) exp(+βsy) y < 0 (10)

where exp(i(kxx − ωt)) is an implicit common factor in (8)–(10). Using the Maxwell
equation∇ × E = −(1/c)∂B/∂t , the magnetic field in the three regions can be obtained.
In order to have a bounded excitation, we require thatβm andβs are both real and positive.
The determination of the dispersion relation requires the match of electromagnetic boundary
conditions aty = 0 and y = d, namely continuity of the tangential components of the
magnetic and electric fieldHx, Hy , andEz. Using Maxwell’s equations with (5) we express
the tangential components in terms of the unknownsEmz, Eaz, Ebz, andEsz. The boundary
conditions then yield the following dispersion relation:

g+ − βm(µ1µ2 − µ2
T )

g− − βm(µ1µ2 − µ2
T )

exp(−βd) = g+ + βs(µ1µ2 − µ2
T )

g− + βs(µ1µ2 − µ2
T )

exp(+βd) (11a)

which reduces to

(βmβs(µ1µ2 − µ2
T ) − kxµT (βs − βm) + k2) tanh(βd) + βµ2(βm + βs) = 0 (11b)

whereg± = µT kx ± µ2β andk2 = k2
x − q2

0ε⊥µ2. Equations (11) above constitute the main
analytical results of the work. We have checked (11) by imposing various special limits,
viz., d = 0 andd → ∞. It is found that within these special limits the general dispersion
relation (11) reproduces exactly the results previously reported, for a single interface (d = 0;
see e.g. [33]) and (d → ∞ [24, 25]).

Depending on the spectral regionβ, βm, and βs can be real or imaginary. In order
to have bounded excitations we must haveβm and βs both be real and positive. This
corresponds to electric fields that vanish exponentially as one moves away from the film.
If, in addition, β is real then we have a surface mode that decays exponentially both inside
and outside the effective-medium film. Ifβ is imaginary, then we have bulk modes, with
an oscillatory profile for the electric field inside the film. As we will see, this division
into bulk and surface modes is somewhat arbitrary. There are cases where an individual
mode technically changes form a surface mode to a bulk mode, but still retains most of its
properties, particularly with regard to being localized to a particular surface.

The case of TM polarization, withH along thez axis, may also be of interest for canted
structures as discussed previously. The dispersion relations for this case may be obtained
in a similar fashion. We find

(βmβsε⊥ + β2) tanh(βd) + ε⊥β(βm + βs) = 0 (12)

where now

−k2
y = β2 = (ε⊥/ε‖)k2

x − q2
0ε⊥µ3. (13)



Magnetic effective-medium films 1043

3. The magnetostatic limit

In the magnetostatic limitkx � q0, the decay constants reduce toβm = βs = k = |kx | and

β = (µ1/µ2)
1/2kx. (14)

Equation (11) then reduces to

(µ1µ2 − µ2
T + 1) tanh((µ1/µ2)

1/2|kx |d) + 2µ2(µ1/µ2)
1/2 = 0. (15)

(15) indicates that the dispersion relation in the magnetostatic limit is reciprocal, independent
of the dielectric substrate. In the limit offa = 1, (15) reduces to equation (23) in [10] and
equation (25) in [11].

One can analyse (15) in the following special cases:

(i) kxd � 1. The hyperbolic tangent in (15) tends to unity, hence (15) reduces to two
conditions,

(µ1µ2)
1/2 + µT + 1 = 0 (16)

(µ1µ2)
1/2 − µT + 1 = 0. (17)

Equations (16) and (17) forfa = 1 together withd → ∞ reproduce exactly the result
previously obtained for the semi-infinite system [34].

(ii) kxd � 1. Assuming that (µ1/µ2)
1/2kxd � 1 then (15) yields an explicit solution

for kx ,

|kx | = −2µ2/d(µ1µ2 − µ2
T + 1). (18)

This result holds for very thin films.

4. The retarded limit

4.1. A symmetrically bounded effective-medium film

For the symmetric configuration, whenεm and εs are both equal to, say,ε, and therefore
βm = βs , then (11) reduces to the following dispersion relation:

(β2
s µ

2
V + β2 − (µT /µ2)

2k2
x) tanh(βd) = −2βsβµV . (19)

As d → ∞, the hyperbolic function in (19) tends to unity and (19) yields two conditions,
the dispersion relation for the single interface effective mode [24, 25]:

βsµV + β ± (µT /µ2)kx = 0. (20)

We note that even though the dispersion relation is reciprocal, the mode profile of the wave
may be nonreciprocal, i.e. the localization of the wave to the upper or lower surface depends
on propagation direction. We will see explicit example of this below. Also (19) forfa = 1
reduces to equation (12) in [12].

We have solved the implicit dispersion relation given by (19) numerically. We use
the parameters and the permeabilities defined in [28] for the antiferromagnetic FeF2. This
gives a resonance frequencyω0 = γ (2HaHe + H 2

a )1/2 = 260 GHz. The results, frequency
as a function of wavevector for different values of the filling fractionfa, are presented in
figure 2. The thickness of the film is 200µm.

In figure 2(a) we show the results forfa = 1, i.e. a pure FeF2 film. For orientation,
the limits of the bulk band in an infinite extended antiferromagnet are also shown as dotted
lines. Because of the finite film thickness, the bulk modes are quantized, corresponding
to different standing waves within the film. As a result the bulk ‘band’ is now broken
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up into individual modes, as expected, and as previously described by Lacy. The surface
modes in the middle of the figure exist outside the bulk bands. In contrast, the surface
modes at the top of the figure (ω/ω0 = 1.01) continue smoothly from outside the bulk
band limits to inside these limits. As we will see, in the regions where the surface mode
penetrates into the bulk band, we obtain mixed type modes having both bulk and surface
characteristics.

In figure 2(b)–(d) we show the evolution of the dispersion curves asfa is decreased,
i.e. as more nonmagnetic material is introduced. In the study of surface modes on
antiferromagnetic superlattices, it was argued that asfa > 0.5 the magnetostatic modes
(the surface modes which exist fork → ∞) disappear because the surface modes intersect
the bulk band. In our results for thin films, we see that the surface modes penetrate the bulk
bands, but, in fact, remain relatively far away from the quantized bulk modes over much
of the k-space. Thus even for figure 2(d) where the ‘surface modes’ are mostly contained
in the bulk band, they really maintain their identity as individual modes.

Figure 2. Dispersion relations for magnetic polaritons of an effective-medium film in vacuum.
The heavy dashed lines show the boundaries of the bulk bands in an infinite effective medium.
The nearly vertical dashed lines are the light lines in vacuum. (a)fa = 1, corresponding to a
pure FeF2 film; (b) fa = 0.7; (c) fa = 0.5; (d) fa = 0.3. The applied field is 0.2 kG and the
thickness of the film is 200µm.

In figure 3 we illustrate the character of the modes by plotting|Ez(y)|2 within the
antiferromagnetic film. These plots are forfa = 0.5. In figure 3(a) we study the high-
frequency surface mode, just outside the upper bulk band. The+kx and −kx modes are
essentially mirror images of each other, with the localization exactly reversed by a reversal
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Figure 3. Electric field profiles for different points on the dispersion relation of figure 2(c):
(a) kx = 61 cm−1 and ω/ω0 = 1.008 216; (b)kx = 113 cm−1 and ω/ω0 = 1.002 045;
(c) kx = 200 cm−1 andω/ω0 = 1.004 817; (d)kx = 89 cm−1 andω/ω0 = 0.998 0063.y = 0
corresponds to the antiferromagnet–substrate interface.

of the direction of propagation. This is true of all the modes in this symmetric structure.
This is to be expected since a reversal of propagation is essentially equivalent to rotating
the film through 180◦ about the external magnetic field.

We examine the surface mode in the middle of the dispersion curve (ω/ω0 = 1.004)
in figure 2(b) and (c). In (b) the surface mode lies outside the bulk band and the profile
is characteristic of exponential functions, i.e.β is pure real. In (c) we are looking at the
profile for the same surface mode that has now penetrated the bulk band. As a resultβ is
imaginary and the profiles show features characteristic of sines and cosines. However, the
wave remains strongly localized to one surface or the other. The three curves for surface
modes, figure 3(a)–(c), all display significant localization, while the one curve, figure 3(d),
for a bulk mode displays a profile which has intensity at the two surfaces which is nearly
the same.

In the dispersion relation of figure 2, the results are reciprocal in the sense that
ω(kx) = ω(−kx); the frequency is independent of the direction of propagation. However,
the localization of the wave depends strongly on the sign ofkx as can be seen in figure 3.
In all cases, reversing the direction of propagation reverses the localization of the wave as
well.

4.2. An asymmetrically bounded effective medium film

The case investigated here, an antiferromagnetic film on a substrate, is obviously more
practical. In figure 4 we present the dispersion relations, again for different values offa.
The introduction of the substrate has immediate consequences for the dispersion relations.
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Figure 4. Dispersion relations for magnetic polaritons of an effective-medium film on a
substrate: (a)fa = 1, corresponding to a pure FeF2 film; (b) fa = 0.7; (c) fa = 0.5;
(d) fa = 0.3. The applied field is 0.2 kG and the thickness of the film is 200µm. The
nearly vertical dashed lines are the light lines for the substrate.

Since the substrate has a high dielectric constant, the light lineω = ck/ε1/2, that marks the
boundary of the bounded modes, now lies farther our inkx-space. More importantly, the
dispersion curves, particularly for the surface modes, are now strongly nonreciprocal. This
nonreciprocity persists even as the fraction of the magnetic materialfa is reduced.

It is easy to understand why the introduction of a substrate should create such
nonreciprocity in the surface modes. In the previous section we saw that, depending on the
sign of kx , these waves were localized either to the top surface of the film or the bottom
surface of the film. When the wave is localized to the top surface, it has the dispersion
relation of a surface mode appropriate to a vacuum–antiferromagnetic interface. When the
wave is localized to the bottom surface, it has the dispersion relation appropriate to the
dielectric–antiferromagnetic interface.

The strongest nonreciprocity in the asymmetric structure occurs near the light line.
Again this is easy to understand. At large wavevectors, far away from the light line, the
excitations are essentially decoupled from the electromagnetic waves and are representative
of the pure magnetic spin waves. In this case, the dielectric constant of the substrate
becomes unimportant, because the waves have essentially no electric field component to be
influenced by the dielectric constant.

In figure 5 we plot the profiles of some of the waves in figure 4(c). Note that since
the dispersion relations are no longer reciprocal, we must choose different frequencies for
+kx and−kx propagation in order to remain on the dispersion curves. A very interesting
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Figure 5. Electric field profiles for different points on the dispersion relation of figure 4(c):
(a) kx = +250 cm−1 and ω/ω0 = 1.004 963 andkx = −250 cm−1 and ω/ω0 = 1.005 12;
(b) kx = 190 cm−1 and ω/ω0 = 1.000 507 andkx = −190 cm−1 and ω/ω0 = 0.999 8679;
(c) kx = ±351 cm−1 and ω/ω0 = 1.006 006; (d)kx = ±351 cm−1 and ω/ω0 = 1.000 374.
y = 0 corresponds to the antiferromagnet–substrate interface.

consequence of this is shown in figure 5(a). Here we present profiles of the modes for
kx = ±250 and frequencies nearω/ω0 = 1.005. On one side of figure 4(c) (+kx), the mode
is a true surface mode. The resultant profile in figure 5(a) has exponential characteristics.
On the other side of the dispersion relation (−kx) the mode lies inside the bulk band. As
a result the profile of this mode in figure 5(a) appears more like a portion of a bulk mode.
Nonetheless, both the ‘true’ surface mode and the ‘bulk’ mode show strong localization to
one surface or the other, with the−kx mode being localized at the vacuum–antiferromagnet
interface and the+kx mode being localized at the antiferromagnet–substrate interface.

An interesting feature of the profiles is that the bulk ‘standing waves’ also can show
significant localization. For example in figure 5(c) the+kx mode has a large intensity on the
y = 0 side of the film (the substrate side) and a much smaller intensity on they = 0.02 cm
side. The mode for−kx has this localization reversed. A much weaker localization is
evident in the bulk mode shown in figure 5(d).

5. Summary and conclusions

We have obtained the general dispersion relation for magnetic polaritons propagating in
an effective-medium film supported by a nonmagnetic substrate. The general results are
applied in a study of polaritons in an antiferromagnet–nonmagnet superlattice of FeF2–
ZnF2 on a ZnF2 substrate. Two key results emerge. (i) In the presence of a substrate
the dispersion relations for the surface modes of the effective-medium film are markedly
nonreciprocal. This is in contrast to the results for a free-standing film. (ii) The field profiles
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of the polaritons show that even when surface modes penetrate the bulk band region, they
maintain a high degree of localization. Reversing the direction of propagation changes the
localization from one surface to the other.
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